Prove that : tan^2x/1+tan^2x+cot^2x/1+cot^2x=1
Answers
Answered by
3
tan²x/1+tan²x + cot²x/1+cot²x = 1
Cross Multiplying,
tan²x(1+cot²x) + cot²x(1+tan²x) \ (1+tan²x)(1+cot²x) = 1
⇒ tan²x + cot²x + tan²x + cot²x / 1 + tan²x + cot²x + tan²xcot²x = 1
[ tan²x + cot²x = 2 ] [ tan²xcot²x = 1 ]
⇒ (2+2) / (1+1+1+1) = 1
⇒ 4 / 4 = 1
⇒ 1 = 1
LHS = RHS..
Hence Proved !!
Similar questions