prove that tan 36+tan9+tan 36 tan9=1
Answers
Answered by
149
Answer :
We know that,
tan45 = 1
⇒ tan (36 + 9) = 1
⇒ (tan36 + tan9)/(1 - tan36 tan9) = 1,
using the identity
tan(A + B) = (tanA + tanB)/(1 - tanA tanB)
⇒ tan36 + tan9 = 1 - tan36 tan9
⇒ tan36 + tan9 + tan36 tan9 = 1 [Proved]
#MarkAsBrainliest
We know that,
tan45 = 1
⇒ tan (36 + 9) = 1
⇒ (tan36 + tan9)/(1 - tan36 tan9) = 1,
using the identity
tan(A + B) = (tanA + tanB)/(1 - tanA tanB)
⇒ tan36 + tan9 = 1 - tan36 tan9
⇒ tan36 + tan9 + tan36 tan9 = 1 [Proved]
#MarkAsBrainliest
Answered by
20
Refer above for the answer.
Similar questions