Math, asked by Anonymous, 9 months ago

Prove that
tan^3x/1+tan^2x +cot^3x/1+cot^2x= secx.cosecx- 2sinx.cosx

Answers

Answered by Shailesh183816
2

\huge\boxed{\fcolorbox{red}{yellow}{Shailesh}}

Solution :-

L.H.S★★★★★★★★★★★★■■■■■■■■■■■■■■■■■

tan^3x / (1 + tan^2x ) +

cot^3x / ( 1 + cot^2x )

=tan^3x / sec^2x + cot^3x /cosec^2x

=( sin^3x / cos^3x ) / 1 / cos^2x +

( cos^3x/sin^3x ) / 1 / sin^2x

= (sin^3x / cos^3x ) × ( cos^2x / 1 ) +

( cos^3x / sin^3x ) ×( sin^2 x / 1 )

= sin^3x / cosx + cos^3 x / sinx

= sin^4x + cos^4 x / cosx sinx

=( sin^2x)^2 + (cos^2x)^2 +

2sin^2x cos^2x - 2sin^2x cos^2x / cosx sinx

=( sin^2x + cos^2x )^2-2sin^2x cos^2x /cosx sinx

= (1)^2 - 2sin^2x cos^2x / cosx sinx

= 1 / sinx cosx - 2sin^2x cos^2x/ cosx sinx

= secx cosecx - 2sinx cos x

R.H.S★★★★★★★★★★★★★★★★★★★★★★★★

★★★★★★hope it helps ★★★★★★★★★★★★★

\bf\huge\underline\pink{Follow me}

Answered by Anonymous
0

\huge\star\mathfrak\blue{{Answer:-}}

tan^3x / (1 + tan^2x ) +

cot^3x / ( 1 + cot^2x )

=tan^3x / sec^2x + cot^3x /cosec^2x

=( sin^3x / cos^3x ) / 1 / cos^2x +

( cos^3x/sin^3x ) / 1 / sin^2x

= (sin^3x / cos^3x ) × ( cos^2x / 1 ) +

( cos^3x / sin^3x ) ×( sin^2 x / 1 )

= sin^3x / cosx + cos^3 x / sinx

= sin^4x + cos^4 x / cosx sinx

=( sin^2x)^2 + (cos^2x)^2 +

2sin^2x cos^2x - 2sin^2x cos^2x / cosx sinx

=( sin^2x + cos^2x )^2-2sin^2x cos^2x /cosx sinx

= (1)^2 - 2sin^2x cos^2x / cosx sinx

= 1 / sinx cosx - 2sin^2x cos^2x/ cosx sinx

= secx cosecx - 2sinx cos x

Similar questions