Prove that :- tan (π/4+x/2)=1/secx-tanx
Answers
Answered by
14
LHS = tan(π/4 + x/2)
we know, tan(A + B) = (tanA+ tanB)/(1 - tanA.tanB)
= (tanπ/4 + tanx/2)/(1 - tanπ/4. tanx/2)
we know, tanπ/4 = 1
= (1 + tanx/2)/(1 - tanx/2)
= {1 + sin(x/2)/cos(x/2)}/{1 - sin(x/2)/cos(x/2)}
= {cos(x/2) + sin(x/2)}/{cos(x/2) - sin(x/2)}
= (cosx/2 + sinx/2)(cosx/2 + sinx/2)/(cosx/2 - sinx/2)(cosx/2 + sinx/2)
= (cosx/2 + sinx/2)²/(cos²x/2 - sin²x/2)
cos²A - sin²A = cos2A
2sinA.cosA = sin2A
= (cos²x/2 + sin²x/2 + 2cosx/2.sinx/2)/cosx
= (1 + sinx)/cosx
= secx + tanx
= (secx + tanx)/(sec²x - tan²x)
as sec²A - tan²A = 1
= 1/(secx - tanx) = RHS
we know, tan(A + B) = (tanA+ tanB)/(1 - tanA.tanB)
= (tanπ/4 + tanx/2)/(1 - tanπ/4. tanx/2)
we know, tanπ/4 = 1
= (1 + tanx/2)/(1 - tanx/2)
= {1 + sin(x/2)/cos(x/2)}/{1 - sin(x/2)/cos(x/2)}
= {cos(x/2) + sin(x/2)}/{cos(x/2) - sin(x/2)}
= (cosx/2 + sinx/2)(cosx/2 + sinx/2)/(cosx/2 - sinx/2)(cosx/2 + sinx/2)
= (cosx/2 + sinx/2)²/(cos²x/2 - sin²x/2)
cos²A - sin²A = cos2A
2sinA.cosA = sin2A
= (cos²x/2 + sin²x/2 + 2cosx/2.sinx/2)/cosx
= (1 + sinx)/cosx
= secx + tanx
= (secx + tanx)/(sec²x - tan²x)
as sec²A - tan²A = 1
= 1/(secx - tanx) = RHS
Anonymous:
perfect answer Abhi Bhai... ^•^
Answered by
8
Refer both the pages posted.
I hope this answer helps you .
Attachments:
Similar questions