Math, asked by sakthisanthoshpekzuz, 1 year ago

prove that tan(π/4+x)tan(3π/4+x)=-1

Answers

Answered by cherry72
4

Use identity: tan()=cot(2−)

tan (π/4 + x) . tan (3 π/4 +x)
tan ( π/4+x) . cot ( π/2 ( π/4+x)
tan (π/4+x) . cot ( -π/4 - x )
tan ( π/4+x) . - cot (π/4-x)
= - 1
Answered by Anonymous
0

 \tan = ( \frac{ \pi}{4}  + a)  \times  \tan( \frac{3 \pi + A}{4} )

using \: tangent \: sum \: of \: angle \: formula \ratio -

 tan(A+B) =  \frac{ \tan A+ \tan B}{1 -  \tan A \times  \tan B }

 in \: conjuction \: with \ratio

\tan( \frac{ \tan \pi }{4} )  = 1 \: and \: \tan( \frac{ \tan 3\pi }{4} ) =  - 1

now

\tan(  \frac{\pi}{4}   + A) \times  \tan( \frac{3 \pi }{4}  + A)

=  \frac{ \tan (\frac{ \pi }{4} ) +  \tan  A}{1 -  \tan( \frac{ \pi }{4}) \times  \tan A  }

=  > \frac{ \tan (\frac{3 \pi }{4} ) +  \tan  A}{1 -  \tan( \frac{ 3\pi }{4}) \times  \tan A  }

=   \frac{1 +  \tan A }{1 -  \tan A}  \times  \frac{ - 1 +  \tan A }{1 +  \tan A}

= \frac{ - 1 +  \tan A }{1  -   \tan A} \times \frac{  1  -   \tan A }{1 +  \tan A}

\boxed{=  - 1}

HENCE R.H.S = L.H.S

Similar questions