Math, asked by Ana2020, 7 months ago

Prove that : tan (45+A)= sec2A + tan2A

Answers

Answered by pulakmath007
18

SOLUTION

TO PROVE

tan (45° + A) = sec2A + tan2A

PROOF

RHS

 =  \sf{ \sec 2A\: +  \tan 2A  \: }

 \displaystyle \sf{  =  \frac{1}{ \cos 2A} +  \frac{ \sin 2A}{ \cos 2A}  \: }

 \displaystyle \sf{  =   \frac{1 +  \sin 2A}{ \cos 2A}  \: }

 \displaystyle \sf{  =   \frac{ { \sin}^{2}  A+   { \cos}^{2} A+  2\sin A \cos A}{  { \cos}^{2}  A -   { \sin}^{2} A}  \: }

 \displaystyle \sf{  =   \frac{  { (\sin A  + \cos A\: )}^{2} }{ ( { \cos}  A  +  { \sin} A) \: ( { \cos}  A  -   { \sin} A)}}

 \displaystyle \sf{  =   \frac{  { (\sin A  + \cos A\: )} }{ ( { \cos}  A  -   { \sin} A)}}

Dividing numerator and denominator both by cosA

 \displaystyle \sf{  =   \frac{  { \tan A  +1\: } }{ 1 -   { \tan} A}}

 \displaystyle \sf{  =   \frac{  { 1 + \tan A \: } }{ 1 -   { \tan} A}}

 \displaystyle \sf{  =   \frac{  {  \tan {45}^{ \circ}  + \tan A \: } }{ 1 -  \tan {45}^{ \circ}   { \tan} A}}

 \displaystyle \sf{  =     {  \tan( {45}^{ \circ}  +  A) \: } }

= LHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 3x=cosecθ and 3/x=cotθ,

then find the value of 3(x²-1/x²)

https://brainly.in/question/21134289

Answered by Anonymous
108

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\mathrm{Prove\:}\tan \left(45^{\circ \:}+a\right)=\sec \left(2a\right)+\tan \left(2a\right)}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\bf{\tan \left(45^{\circ \:}+a\right)=\sec \left(2a\right)+\tan \left(2a\right)}

We Have :

L.H.S = \sf{\tan \left(45^{\circ \:}+a\right)}

R.H.S = \sf{\sec \left(2a\right)+\tan \left(2a\right)}

\mathrm{Manipulating\:left\:side}

\sf{\tan \left(45^{\circ \:}+a\right)}

____________________

\bf{\tan \left(45^{\circ \:}+a\right)}

\begin{aligned}&\sf{\text { Use the following identity: } \tan (x)=\frac{\sin (x)}{\cos (x)}}\\\\&\sf{=\frac{\sin \left(45^{\circ}+a\right)}{\cos \left(45^{\circ}+a\right)}}\\\\\\&\sf{\text { Use the following identity: } \sin (s+t)=\cos (s) \sin (t)+\cos (t) \sin (s)}\\\\&\sf{=\frac{\cos \left(45^{\circ}\right) \sin (a)+\cos (a) \sin \left(45^{\circ}\right)}{\cos \left(45^{\circ}+a\right)}}\end{aligned}

\begin{aligned}&\sF{\text { Use the Following identity: } \cos (s+t)=\cos (s) \cos (t)-\sin (s) \sin (t)}\\\\&\sf{=\frac{\cos \left(45^{\circ}\right) \sin (a)+\cos (a) \sin \left(45^{\circ}\right)}{\cos \left(45^{\circ}\right) \cos (a)-\sin \left(45^{\circ}\right) \sin (a)}}\end{aligned}

\displaystyle\sf{=\frac{\sin \left(a\right)+\cos \left(a\right)}{\cos \left(a\right)-\sin \left(a\right)}}

\boxed{\displaystyle\sf{\bf{\tan \left(45^{\circ \:}+a\right)}=\frac{\sin \left(a\right)+\cos \left(a\right)}{\cos \left(a\right)-\sin \left(a\right)}}}

____________________

Now the expression becomes :-

Prove that :  \displaystyle\sf{\frac{\sin \left(a\right)+\cos \left(a\right)}{\cos \left(a\right)-\sin \left(a\right)}=\sec \left(2a\right)+\tan \left(2a\right)}

Now We Have :

L.H.S = \sf{\dfrac{\sin \left(a\right)+\cos \left(a\right)}{\cos \left(a\right)-\sin \left(a\right)}}

R.H.S = \sf{\sec \left(2a\right)+\tan \left(2a\right)}

____________________

\mathrm{Manipulating\:right\:side}

\sf{\sec \left(2a\right)+\tan \left(2a\right)}

\displaystyle\sf{=\frac{1}{\cos \left(2a\right)}+\frac{\sin \left(2a\right)}{\cos \left(2a\right)}}

\sf{=\dfrac{1+\sin \left(2a\right)}{\cos \left(2a\right)}}

\mathrm{Use\:the\:following\:identity:}\:1+\sin \left(2x\right)=\left(\cos \left(x\right)+\sin \left(x\right)\right)^2

\mathrm{Use\:the\:following\:identity:}\:\cos \left(2x\right)=\cos ^2\left(x\right)-\sin ^2\left(x\right)

\displaystyle\sf{=\frac{\left(\cos \left(a\right)+\sin \left(a\right)\right)^2}{\cos ^2\left(a\right)-\sin ^2\left(a\right)}}

\displaystyle\sf{=\frac{\left(\cos \left(a\right)+\sin \left(a\right)\right)^2}{\left(\cos \left(a\right)+\sin \left(a\right)\right)\left(\cos \left(a\right)-\sin \left(a\right)\right)}}

\displaystyle\sf{=\frac{\cos \left(a\right)+\sin \left(a\right)}{\cos \left(a\right)-\sin \left(a\right)}}

\large\boxed{\displaystyle\sf{\frac{\sin \left(a\right)+\cos \left(a\right)}{\cos \left(a\right)-\sin \left(a\right)}\displaystyle\sf{=\frac{\cos \left(a\right)+\sin \left(a\right)}{\cos \left(a\right)-\sin \left(a\right)}}}}

L.H.S = R.H.S

Hence Proved !!!

Similar questions