Prove that tan(45+∝)−tan(45−∝)/
tan(45+∝)+tan(45−∝)
=sin2∝
Answers
Answered by
1
Answer:
tan (45+ a) = (1 + tan a)/ (1 – tana)
tan (45 – a) = (1 – tana)/ (1 + tana)
now use this in lhs
(1+ tana)^2 – (1 – tana)^2 / (1+tana)^2 + ( 1 – tan a)^2
= 4tana / 2 + 2 tan^2 a
= 2 tana /(1+tan2a)
= sin 2a
Similar questions