Math, asked by ashish127, 1 year ago

prove that tan(45+theta)=1+tan theta/1-tan theta

Answers

Answered by pulakmath007
22

SOLUTION :

TO PROVE

 \displaystyle \sf{} \tan(  {45}^{ \circ}  +  \theta) =  \frac{1 +  \tan \theta}{ 1  -  \tan \theta\: }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

 \displaystyle \sf{} \tan( A + B) =  \frac{ \tan A +  \tan B}{ 1 -  \tan A \tan B\: }

EVALUATION

Here we know that

 \displaystyle \sf{} \tan( A + B) =  \frac{ \tan A +  \tan B}{ 1 -  \tan A \tan B\: }

 \sf{}Now  \: taking \:  A =  {45}^{ \circ} \:  \: and \:  \:  B = \theta \:  \: we \: get

 \displaystyle \sf{} \tan(  {45}^{ \circ}  +  \theta) =  \frac{ \tan  {45}^{ \circ} +  \tan \theta}{ 1  -  \tan {45}^{ \circ} \tan \theta\: }

 \implies  \displaystyle \sf{} \tan(  {45}^{ \circ}  +  \theta) =  \frac{1 +  \tan \theta}{ 1  -  \tan \theta\: } \:   \:  (\because \: \tan  {45}^{ \circ} = 1 \: )

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of

(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions