Math, asked by mandalrishabh60, 19 days ago

prove that : tan 4x = 4 tan x (1 – tan- x) ÷ 1-6 tan 2 x + tan 4 х​

Answers

Answered by hotelcalifornia
0

Step-by-step explanation:

Given:

tan4x=\frac{4 tanx (1-tan^{2} x)}{1-6tan^{2} x+tan^4x}

To Find:

To prove that tan4x=\frac{4 tanx (1-tan^{2} x)}{1-6tan^{2} x+tan^4x}              

Solution:

Given that,

tan4x=\frac{4 tanx (1-tan^{2} x)}{1-6tan^{2} x+tan^4x}

Where,

Left Hand side LHS=tan4x

Right Hand side RHS=\frac{4 tanx (1-tan^{2} x)}{1-6tan^{2} x+tan^4x}

Now take LHS,

tan4x=tan2(2x)

         =\frac{2tan2x}{1-tan^22x}

         =\frac{2(\frac{2tanx}{1-tan^2x}) }{1-(\frac{2tanx}{1-tan^2x})^2 }

         =\frac{\frac{4tanx}{1-tan^2x} }{1-\frac{4tan^2x}{(1-tan^2x)^2} }

         =\frac{\frac{4tanx}{1-tan^2x} }{\frac{(1-tan^2x)^2-4tan^2x}{(1-tan^2x)^2} }

        =\frac{4tanx(1-tan^2x)}{(1-tan^2x)^2-4tan^2x}

        =\frac{4tanx(1-tan^2x)}{1+tan^4x-2tan^2x-4tan^2x}

        =\frac{4 tanx (1-tan^{2} x)}{1-6tan^{2} x+tan^4x}=RHS

Hence proved.

Answer:

Hence the expression tan4x=\frac{4 tanx (1-tan^{2} x)}{1-6tan^{2} x+tan^4x} is proved.

Similar questions