Math, asked by sidddee, 1 year ago

Prove that: tan 5 tan 35 tan 60 tan55 tan 85 = root 3

Answers

Answered by MaheswariS
7

tan\,5^{\circ}{\times}tan\,35^{\circ}{\times}tan\,60^{\circ}{\times}tan\,55^{\circ}{\times}tan\,85^{\circ}

\text{Using,}

\boxed{\bf\;tan\,\theta=cot(90^{\circ}-\theta)}

\implies\;tan5^{\circ}=cot\,85^{\circ}\;\text{and}

tan35^{\circ}=cot\,55^{\circ}

\text{Now,}

tan\,5^{\circ}{\times}tan\,35^{\circ}{\times}tan\,60^{\circ}{\times}tan\,55^{\circ}{\times}tan\,85^{\circ}

=cot\,85^{\circ}{\times}cot\,55^{\circ}{\times}\sqrt{3}{\times}tan\,55^{\circ}{\times}tan\,85^{\circ}

=\frac{1}{tan\,85^{\circ}}{\times}\frac{1}{tan\,55^{\circ}}{\times}\sqrt{3}{\times}tan\,55^{\circ}{\times}tan\,85^{\circ}

=\sqrt{3}

\therefore\boxed{\bf\,tan\,5^{\circ}{\times}tan\,35^{\circ}{\times}tan\,60^{\circ}{\times}tan\,55^{\circ}{\times}tan\,85^{\circ}=\sqrt{3}}

Similar questions