Prove that tan 5 theta + tan 3 theta / tan 5 theta - tan 3 theta = 4 cos 2 theta cos 4 theta
Answers
Answered by
36
tan(5θ)+tan(3θ)
tan(5θ)−tan(3θ)
=
sin(5θ)
cos(5θ)
+
sin(3θ)
cos(3θ)
sin(5θ)
cos(5θ)
−
sin(3θ)
cos(3θ)
=
sin(5θ)cos(3θ)+cos(5θ)sin(3θ)
cos(5θ)cos(3θ)
sin(5θ)cos(3θ)−cos(5θ)sin(3θ)
cos(5θ)cos(3θ)
=
sin(5θ)cos(3θ)+cos(5θ)sin(3θ)
sin(5θ)cos(3θ)−cos(5θ)sin(3θ)
=
sin(5θ+3θ)
sin(5θ−3θ)
⎡
⎣
⎢
⎢
⎢
Since,sin(A±B)
=sin(A)cos(B)±cos(A)sin(B)
⎤
⎦
⎥
⎥
⎥
=
sin(8θ)
sin(2θ)
=
2sin(4θ)cos(4θ)
sin(2θ)
⎡
⎣
⎢
⎢
⎢
Since,sin(2A)
=2sin(A)cos(A)
⎤
⎦
⎥
⎥
⎥
=
2(2sin(2θ)cos(2θ))cos(4θ)
sin(2θ)
⎡
⎣
⎢
⎢
⎢
Since,sin(2A)
=2sin(A)cos(A)
⎤
⎦
⎥
⎥
⎥
=
4sin(2θ)cos(2θ)cos(4θ)
sin(2θ)
=4cos(2θ)cos(4θ)
Vinithsai:
Plz mark as brainliest if diz help u
Answered by
112
let A = θ.
Similar questions