prove that: tan 5 theta +tan3 theta/tan 5 theta- tan 3 theta = 4 cos 2 theta cos 4 theta
Answers
Answer:
It is true that
(tan5θ +tan3θ) / (tan5θ - tan3θ) = 4 cos2θ.cos4θ
Step-by-step explanation:
To prove,
(tan5θ +tan3θ) / (tan5θ - tan3θ) = 4 cos2θ.cos4θ
LHS:
=(tan5θ +tan3θ) / (tan5θ - tan3θ)
(We know that (tanα +tanβ) / (tanα - tanβ) = sin(α+β) / sin(α-β) )
∴(tan5θ +tan3θ) / (tan5θ - tan3θ)
= sin(5θ + 3θ) / sin(5θ - 3θ)
= sin8θ/sin2θ
(We also know that sin2x = 2sinx.cosx )
So, sin8θ = 2sin4θ.cos4θ
∴ 2sin4θ.cos4θ/sin2θ
(Again using same formula i.e. sin2x = 2sinx.cosx )
So, sin4θ = 2sin2θ.cos2θ
∴ 2(2sin2θ.cos2θ).cos4θ/sin2θ
= 4sin2θ.cos2θ.cos4θ/sin2θ
(sin2θ/sin2θ = 1)
∴ 4cos2θ.cos4θ
RHS:
= 4cos2θ.cos4θ
∴ LHS = RHS
Hence Proved that
(tan5θ +tan3θ) / (tan5θ - tan3θ) = 4 cos2θ.cos4θ
Hope, you got it :-))
For more understanding, write it once on a paper :-)
Please, mark it as brainiest
Answer:
Let theta = x.
(tan 5x+tan 3x)/(tan 5x -tan 3x) = 4 cos 2x cos 4x.
L.H.S .
=(sin 5x /cos 5x +sin 3x /cos 3x)/( sin 5x / cos 5x - sin 3x/ cos 3x).
=[(sin 5x.cos 3x+cos 5x.sin 3x)/cos 5x.cos 3x]/[(sin 5x.cos 3x -cos 5x.sin 3x)/cos 5x.cos 3x]
=sin(5x+3x)/sin (5x-3x).
=sin8x/sin2x.
=2sin4x.cos 4x/sin 2x.
=2.2sin 2x.cos 2x.cos 4x/sin2x.
=4cos 2x.cos 4x. , Proved.
Step-by-step explanation: