Math, asked by nikhilkushwah5297, 21 days ago

prove that tan 50-tan 40=2 tan 10​

Answers

Answered by divya2659
1

Answer:

Tan50-tan40=2tan10

tan50=2tan+tan90

tan50=tan[40+10]

we have tan[a+b]=[tan a+tan b]

[1-tan a tan b]

=tan[40+10]=[tan40+tan10]

[1-tan40 tan10]

=tan50=[tan40+tan10]

[1-tan40tan10]

=tan50[1-tan40tan10]=tan40+tan10

=tan50-tan50tan40tan10=tan40+tan10....and

tan50=tan[90-40]=cot40

=tan50-cot90tan40tan10=tan40+tan10

=tan50-tan10=tan40+tan10

because cot90=1

tan40

=tan50=tan40+2tan10

.

· · tan50-tan40=2tan10

Thanks

Answered by yogeshbagde587
0

tan 50 = tan (40+10)

we know that tan ( a+b) = ( tan + tan b)/ ( 1- tan 40 tan 10)

cross multiply

tan 50 (1- tan 40 tan 10) = tan 40 + tan 10

tan 50- tan 50 tan 40 tan 10 = tan 40 + tan 10

since tan 50 = tan ( 90-40) = cot 40

so cot 40 tan 40 = 1

therefore tan 50 - tan 10 = tan 40 + tan 10

=> tan 50 - tan 40 = 2 tan 10

Hence proved.

Similar questions