Prove that tan 56° = Cos 11° +Sin 11° /Cos 11°-Sin 11°
please solve and send with proper steps
Answers
Step-by-step explanation:
Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5
Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0
Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]
Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]⇒cot2θ−33–√cotθ+6=0⇒cot2θ-33cotθ+6=0
Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]⇒cot2θ−33–√cotθ+6=0⇒cot2θ-33cotθ+6=0Work with option , we find that
Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]⇒cot2θ−33–√cotθ+6=0⇒cot2θ-33cotθ+6=0Work with option , we find thatThis equation is satisfied by θ=π6θ=π6.
PLEASE MARK AS BRAINLIST