Math, asked by wildlife63, 5 hours ago

Prove that tan 56° = Cos 11° +Sin 11° /Cos 11°-Sin 11°


please solve and send with proper steps​

Answers

Answered by bagedivya
0

Step-by-step explanation:

Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5

Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0

Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]

Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]⇒cot2θ−33–√cotθ+6=0⇒cot2θ-33cotθ+6=0

Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]⇒cot2θ−33–√cotθ+6=0⇒cot2θ-33cotθ+6=0Work with option , we find that

Given , cosec2θ=33–√cotθ−5cosec2θ=33cotθ-5⇒1+cot2θ−33–√cotθ+5=0⇒1+cot2θ-33cotθ+5=0[since , cosec2θ=1+cot2θ][since , cosec2θ=1+cot2θ]⇒cot2θ−33–√cotθ+6=0⇒cot2θ-33cotθ+6=0Work with option , we find thatThis equation is satisfied by θ=π6θ=π6.

\huge\mathcal{\fcolorbox{aqua}{azure}{\pink{♡OK♡}}}

Answered by Anonymous
0

PLEASE MARK AS BRAINLIST

Attachments:
Similar questions