prove that tan(60 +A ) tan (60-A) =2 cos2A+1/2cos2A-1
Answers
Answered by
4
Step-by-step explanation:
Let us use A instead of theeta.
LHS = tan(60°+A)tan(60°-A)
={(tan60°+tanA)/(1-tan60°tanA)}×
{(tan60°-tanA)/(1+tan60°tanA)}
=(tan^2 60° - tan^2 A)/(1-tan^2 60°×tan^2A)
= (3-tan^2 A)/(1–3tan^2 A)
= (3 - sin^2A/cos^2A)/(1 - 3sin^2A/cos^2A)
=(3cos^2 A -sin^2A)/(cos^2 A - 3sin^2A)
={3cos^2A-(1-cos^2A)}/
{cos^2A-3(1-cos^2A)
= (4cos^2 A -1)/(4cos^2 A -3)
={4(1+cos2A)/2–1}/{4(1+cos2A)/2 -3}
= {2(1+cos2A)-1}{2(1+cos2A)-3}
= (2cos2A+1)/(2cos2A-1)= RHS
Answered by
3
Answer:
please tell the value of A to prove
Similar questions