Math, asked by vatochsamrankshibo, 1 year ago

Prove that : tan 70= 2tan 50 + tan 20

Answers

Answered by Vinithsai
367
According to the trigonometric identity, tan70=tan(20+50) tan70=(tan20+tan50)/1-tan20tan50 tan70-tan20tan50tan70=tan20+tan50 Also tan70tan20=tan70cot70=1 Hence tan70-tan50=tan20+tan50 So tan70=tan20+2tan50 Hope this helps :) :)

Vinithsai: Plz mark as brainliest if diz help u out
Answered by aqibkincsem
204

"According to the trigonometric identity,

tan70 = tan (20 + 50)

tan70= (tan20 + tan50) / 1-tan20 tan50

Tan70 - tan20 tan50 tan70= tan20 + tan50

Also tan70 tan20 = tan70 cot70 = 1

Hence, it will change to following equation

tan70 - tan50 = tan20 + tan50

So tan70 = tan20 + 2tan50

Complementary angles:


tan70=cot20


tan70tan20=cot20tan20=1


Tangent difference angle formula:


tan(a−b)=tana−tanb1+tanatanb


tan50=tan(70−20)=tan70−tan201+tan70tan20=tan70−tan201+1


2tan50=tan70−tan20


tan70=tan20+2tan50

"

Similar questions