Math, asked by grahamdon2000, 10 months ago

Prove that tan 9 = (cos 36 - sin 36) / (cos 36 + sin 36) Using L.H.S. Answer the Brainiest for this question.

Answers

Answered by azizalasha
17

Answer:

L.H.S. = R.H.S.

Step-by-step explanation:

L.H.S. = (cos 36 - sin 36) / (cos 36 + sin 36)  

        = (cos 36 - cos 54) / (cos 36 +cos 54)

        = 2 sin 45 sin 9 / 2 cos 45 cos 9

        =  sin 9 /  cos 9

        =  tan 9

         = R.H.S.

Answered by Anonymous
144

AnswEr :

To Prove :

 \tan(9)  = \dfrac{( \cos(36)  -  \sin(36) )}{( \cos(36)   +   \sin(36) )}

Proof :

I'm taking LHS to Prove this Identity -

\Longrightarrow \sf \tan(9)

⠀⠀⠀⠀⋆ tan θ = sin θ / cos θ

\Longrightarrow \sf \dfrac{ \sin(9) }{ \cos(9) }

⠀⠀⠀⠀⋆ we can write 9 = (45 - 36)

\Longrightarrow \sf \dfrac{ \sin(45 - 36) }{ \cos(45 - 36) }

⠀⠀⠀⠀⋆ sin(A - B) = sinAcosB - cosAsinB

⠀⠀⠀⠀⋆ cos(A - B) = cosAcosB + sinAsinB

\Longrightarrow \sf \dfrac{ \sin(45) \cos(36)  -   \cos(45) \sin(36)}{ \cos(45) \cos(36)   +  \sin(45) \sin(36)  }

⠀⠀⠀⠀⋆ sin(45) = 1 /√2 = cos(45)

\Longrightarrow \sf \dfrac{  \dfrac{1}{ \sqrt{2} } \times \cos(36)  -   \dfrac{1}{ \sqrt{2} } \times \sin(36)}{ \dfrac{1}{ \sqrt{2} } \times \cos(36)   + \dfrac{1}{ \sqrt{2} } \times \sin(36) }

\Longrightarrow \sf \dfrac{  \cancel\dfrac{1}{ \sqrt{2} }( \cos(36) -  \sin(36)) }{\cancel\dfrac{1}{ \sqrt{2} }( \cos(36)  +  \sin(36)) }

\Longrightarrow \sf \dfrac{( \cos(36) -  \sin(36)) }{( \cos(36)  +  \sin(36)) }

 \therefore \boxed{ \tan(9)  = \dfrac{( \cos(36)  -  \sin(36) )}{( \cos(36)   +   \sin(36) )}}

Similar questions