Math, asked by bam1, 1 year ago

prove that tan 9 degree X tan 21 degree X tan 69 degree X and 81 degree equal to 1

Answers

Answered by SOUMABHA
1
tan9degreextan81degree×tan21degreextan69degree
tan9degree.cot9degree.tan21degree.cot21degree
1.1
=1
Answered by jitumahi435
0

\tan 9° × \tan 21° × \tan 69° × \tan 81° = 1, proved.

Step-by-step explanation:

To prove that: \tan 9° × \tan 21° × \tan 69° × \tan 81° = 1.

L.H.S. = \tan 9° × \tan 21° × \tan 69° × \tan 81°

= \tan 9° × \tan 21° × \tan (90-21)° × \tan (90-9)°

Using the trigonometric identity,

\cot A = \tan (90-A)

= \tan 9° × \tan 21° × \cot 21° × \cot 9°

= (\tan 9° × \cot 9°) × (\tan 21° × \cot 21°)

Using the trigonometric identity,

\tan A × \cot A = 1

\cot A = \dfrac{1}{ \tan A}

= (\tan 9° × \dfrac{1}{\tan 9}°) × (\tan 21° × \dfrac{1}{\tan 21}°)

= 1 × 1

= 1

= R.H.S., proved.

Thus, \tan 9° × \tan 21° × \tan 69° × \tan 81° = 1, proved.

Similar questions