prove that : tan (90-0) + cot (90-0) /cosec 0=sec A
Answers
Answered by
0
Step-by-step explanation:
cosec(90
∘
−θ)sin(90
∘
−θ)cot(90
∘
−θ)
cos(90
∘
−θ)sec(90
∘
−θ)tanθ
+
cotθ
tan(90
∘
−θ)
=2
We know that,
cos(90−θ)=sinθ
sin(90−θ)=cosθ
tan(90−θ)=cotθ
cot(90−θ)=tanθ
sec(90−θ)=cscθ
csc(90−θ)=secθ
sec(θ)=
cos(θ)
1
and csc(θ)=
sin(θ)
1
secθcosθtanθ
sinθcscθtanθ
+
cotθ
cotθ
=2
secθcosθ
sinθcscθ
+1=2
sinθcosθ
sinθcosθ
+1=2
1+1=2
2=2
Hence proved
Similar questions