Math, asked by rach6a9uditi, 1 year ago

Prove that tan(90-A)cotA/cosec2 A-cos2A=0.Explain.

Answers

Answered by hamzak5619
108

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
45

Answer:

 \frac{tan(90-A)cotA}{cosec^{2}A} - cos^{2}A=0

Step-by-step explanation:

LHS = \frac{tan(90-A)cotA}{cosec^{2}A} - cos^{2}A

=\frac{cotA\cdot cotA}{cosec^{2}A} - cos^{2}A

/* tan(90-A) = cotA */

= \frac{cot^{2}A}{cosec^{2}A}-cos^{2}A

=\frac{\frac{cos^{2}A}{sin^{2}A}}{\frac{1}{sin^{2}A}}-cos^{2}A

________________________

i)cotA=\frac{cosA}{sinA}\\ii) cosecA = \frac{1}{sinA}

________________________

=\cos^{2}A-cos^{2}A\\=0\\=RHS

Therefore,

 \frac{tan(90-A)cotA}{cosec^{2}A} - cos^{2}A=0

•••♪

Similar questions