Math, asked by Anchita2005, 3 months ago

prove that tan(90-theta)+cot(90-theta)/cosec theta =sec A​

Answers

Answered by MrImpeccable
5

ANSWER:

To Prove:

  • [tan(90-Θ) + cot(90-Θ)]/(cosecΘ) = secΘ

Proof:

:\longrightarrow\dfrac{\tan(90-\theta)+\cot(90-\theta)}{\csc\theta}=\sec\theta\\\\\text{Solving LHS,}\\\\:\implies\dfrac{\tan(90-\theta)+\cot(90-\theta)}{\csc\theta}\\\\\text{We know that, $\tan(90-A)=\cot A\:\:\&\:\:\cot(90-A)=\tan A$. So,}\\\\:\implies\dfrac{\cot\theta+\tan\theta}{\csc\theta}\\\\\text{Also, $\tan A=\dfrac{\sin A}{\cos A}, \cot A=\dfrac{\cos A}{\sin A}, \csc A=\dfrac{1}{\sin A}$. So,}\\\\:\implies\dfrac{\dfrac{\sin\theta}{\cos\theta}+\dfrac{\cos\theta}{\sin\theta}}{\dfrac{1}{\sin\theta}}

:\implies \dfrac{\dfrac{\cos^2\theta+\sin^2\theta}{\cos\theta\sin\theta\!\!\!\!\!\!\!\!\!/}}{\dfrac{\:\:\:\:1\:\:\:}{\!\!\sin\theta\!\!\!\!\!\!\!\!\!/}}\\\\:\implies\dfrac{\cos^2\theta+\sin^2\theta}{\cos\theta}\\\\\text{We know that, $\cos^2\theta+\sin^2\theta=1$. So,}\\\\:\implies\dfrac{1}{\cos\theta}\\\\\bf{:\implies\sec\theta}} = RHS\\\\\text{\bf{Hence Verified!!}}

Formula Used:

  • tan(90-Θ) = cotΘ
  • cot(90-Θ) = tanΘ
  • tanΘ = sinΘ/cosΘ
  • cotΘ = cosΘ/sinΘ
  • cosecΘ = 1/sinΘ
  • sin²Θ+cos²Θ = 1
Similar questions