Math, asked by bibek786, 1 year ago

prove that: tan A / ( 1 - cot A )+ cot A / ( 1 - tan A ) =1+ sec A .cosec A.

Answers

Answered by Avengers00
30
\underline{\underline{\Huge{\textbf{Question:}}}}

Prove\: that \: \: \dfrac{tan\: A}{1-cot\: A}+\dfrac{cot\: A}{1-tan\: A}= 1+sec\: A\: cosec\: A

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\Large{\textsf{Step-1:}}}
Consider LHS

\underline{\textbf{LHS\: =}}

\implies \dfrac{tan\: A}{1-cot\: A}+\dfrac{cot\: A}{1-tan\: A}

\\

\underline{\Large{\textsf{Step-2:}}}
Express cot\: A in terms of tan\: A and simplify

We have,
\bigstar \: \mathbf{cot\: \theta = \dfrac{1}{tan\: \theta}}

\implies \dfrac{tan\: A}{1-\frac{1}{tan\: A}}+\dfrac{\frac{1}{tan\: A}}{1-tan\: A}

\implies \dfrac{tan\: A}{\frac{tan\: A-1}{tan\: A}}+\dfrac{1}{tan\: A(1-tan\: A)}

\implies \dfrac{tan^{2}\: A}{tan\: A-1}+\dfrac{1}{tan\: A(1-tan\: A)}

\\

\underline{\Large{\textsf{Step-3:}}}
Express the two terms with same denominator

\implies \dfrac{-tan^{2}\: A}{1-tan\: A}+\dfrac{1}{tan\: A(1-tan\: A)}

\\

\underline{\Large{\textsf{Step-4:}}}
Express the two terms as a single term

\implies \dfrac{-tan^{3}\: A+1}{tan\: A(1-tan\: A)}

\\

\underline{\Large{\textsf{Step-5:}}}
Using the Identity
\bigstar \: \: \mathbf{a^{3}-b^{3}= (a-b)(a^{2}+ab+b^{2}}

\implies \dfrac{1^{3}-tan^{3}\: A}{tan\: A(1-tan\: A)}

\implies \dfrac{(1 -tan\: A)(1+tan^{2}\: A+tan\: A)}{tan\: A(1-tan\: A)}

\\

\underline{\Large{\textsf{Step-6:}}}
Cancel out the common term in Numerator and Denominator

\implies \dfrac{\cancel{(1 -tan\: A)}(1+tan^{2}\: A+tan\: A)}{tan\: A\cancel{(1-tan\: A)}}

\implies \dfrac{(1+tan^{2}\: A+tan\: A)}{tan\: A}

\\

\underline{\Large{\textsf{Step-7:}}}
Using the Identity
\bigstar\: \mathbf{sec^{2}\: \theta-tan^{2}\: \theta=1}

\implies sec^{2}\: A= (1+tan^{2}\: A)

\implies \dfrac{sec^{2}\: A+tan\: A}{tan\: A}

\\

\underline{\Large{\textsf{Step-8:}}}
Split the fraction into two terms

\implies \dfrac{sec^{2}\: A}{tan\: A}+\dfrac{\cancel{tan\: A}}{\cancel{tan\: A}}

\\

\underline{\Large{\textsf{Step-9:}}}
Using the Identity
\bigstar \: \mathbf{cot\: \theta = \dfrac{1}{tan\: \theta}}

\implies (sec^{2}\: A \dfrac{1}{tan\: A})+1

\implies (sec^{2}\: A\: cot\: A)+1

\\

\underline{\Large{\textsf{Step-10:}}}
Express sec\: A and cot\: A in terms of cos\: A

We have,
\bigstar \: \mathbf{sec\: \theta= \dfrac{1}{cos\: \theta}}

\bigstar\: \mathbf{cot\: \theta= \dfrac{cos\: \theta}{sin\: \theta}}

\implies \left(\dfrac{1}{cos^{2}\: A}\times \: \dfrac{cos\: A}{sin\: A}\right)+1

\\

\underline{\Large{\textsf{Step-11:}}}
cancel out the common term in both numerator and denominator

\implies \left(\dfrac{1}{cos^{\cancel{2}}\: A}\times \: \dfrac{\cancel{cos\: A}}{sin\: A}\right)+1

\implies \left(\dfrac{1}{cos\: A} \times \dfrac{1}{sin\: A}\right)+1

\\

\underline{\Large{\textsf{Step-12:}}}
Using the Identity
\bigstar \: \mathbf{sec\: \theta= \dfrac{1}{cos\: \theta}}

\bigstar\: \mathbf{cosec\: \theta= \dfrac{1}{sin\: \theta}}

\implies \left(sec\: A \times Cosec\: A\right)+1

\implies 1+sec\: A\: Cosec\: A

\underline{\textbf{= RHS\:}}

ShuchiRecites: Amazing answer, its perfection was beyond limits. Keep answering!
Avengers00: Thank you ((:
jagriti1413: I jußssst love it
Avengers00: Thannk you :D
jagriti1413: what D means
Similar questions