Math, asked by Savitamehta6476, 11 months ago

Prove that: tan a/1-cot a + cot a / 1-tan a =1+tan a+cot a

Answers

Answered by lavanyamahee79
0

Answer:

Step-by-step explanation:

Attachments:
Answered by SANDHIVA1974
2

Step-by-step explanation:

\large\underline{ \underline{ \sf \maltese{ \: Correct \: Question:- }}}

\sf{{Prove \:that:\:}{\dfrac{tanA}{1-cotA}}+{\dfrac{cotA}{1-tanA}}=1+tanA+cotA}

\large\underline{ \underline{ \sf \maltese{ \: Proof:- }}}

LHS:

\sf{{\dfrac{tanA}{1-cotA}}+{\dfrac{cotA}{1-tanA}}}

We Know that,

\boxed{\sf{\red{cot\theta ={\dfrac{1}{tan\theta}}}}}

Putting Values,

\sf{{\dfrac{tanA}{1-{\dfrac{1}{tanA}}}}+{\dfrac{{\dfrac{1}{tanA}}}{1-tanA}}}

\sf{{\implies}{\dfrac{{tan}^2A}{tanA-1}}+{\dfrac{1}{tanA(tanA-1)}}}

\sf{{\implies}{\dfrac{{tan}^3A-1}{tanA(tanA-1)}}}

\sf{\green{We\:know\:that:\:}{\boxed{\sf{\green{a^3-b^3=(a-b)(a^2+ab+b^2)}}}}}

\sf{{\implies}{\dfrac{(tanA-1)(tan^2A+tanA+1)}{tanA(tanA-1}}}

\sf{{\implies}{\dfrac{tan^2A+tanA+1}{tanA}}}

\sf{{\implies}{\dfrac{tan^2A}{tanA}}+{\dfrac{tanA}{tanA}}+{\dfrac{1}{tanA}}}

\sf{{\implies}{tanA+1+cotA}}

RHS:

\sf{1+tanA+cotA}

\boxed{\sf{\orange{L.H.S=R.H.S}}}

Hence, Proved.

Similar questions