prove that tan A/(1- cot A) + cot A/(1- tan A) = sec A. cosec A+ 1
Answers
Answered by
1
Answer:
RHS=LHS
Step-by-step explanation:
ttan A/(1-cotA)+ CotA/(1−tanA)=1+secAcscA
Taking L.H.S.-
tanA/(1−cotA)+CotA/(1−tanA)= tanA/1−(1/tanA)+(1/tanA)/1-tanA
=Tan^2A/tanA-1 + 1/tanA(1−tanA)
=1-tan^3A/tanA/(1−tanA)
=(1-tanA)(1+tanA+tan^2A)/tanA(1−tanA)
=sec^2+tanA/tanA. (∵1+tan=sec^2A)
=1+Sec^2/TanA
=1+1/cosAsinA
=1+secA cosecA
=RHS
Similar questions