Prove that tan A 1−cotA + cot A 1−tanA = 1 + tan A + cot A don't spam.
Answers
Answered by
0
Answer:
LHS=tanA1−cotA+cotA1−tanA
LHS=sin2AcosA(sinA−cosA)+cos2AsinA(cosA−sinA)
LHS=sin3A−cos3AsinAcosA(sinA−cosA)
We know that a3−b3=(a−b)(a2+b2+ab)
LHS=sin2A+cos2A+sinAcosAsinAcosA
LHS=tanA+cotA+1=RHS
Hence Proved!
Answered by
1
Answer:
ANSWER
1−cotA
tanA
+
1−tanA
cotA
=1+secAcscA
Taking L.H.S.-
1−cotA
tanA
+
1−tanA
cotA
=
1−(
tanA
1
)
tanA
+
1−tanA
(
tanA
1
)
=
tanA−1
tan
2
A
+
tanA(1−tanA)
1
=
tanA(1−tanA)
1−tan
3
A
=
tanA(1−tanA)
(1−tanA)(1+tanA+tan
2
A)
(∵a
3
−b
3
=(a−b)(a
2
+ab+b
2
))
=
tanA
sec
2
A+tanA
(∵1+tan
2
A=sec
2
A)
=1+
tanA
sec
2
A
=1+
cosAsinA
1
=1+secAcscA
= R.H.S.
Hence proved.
Similar questions