Math, asked by aaryanrajgond0106, 6 months ago

Prove that tan A 1−cotA + cot A 1−tanA = 1 + tan A + cot A don't spam.

Answers

Answered by Aditya9647om
0

Answer:

LHS=tanA1−cotA+cotA1−tanA

LHS=sin2AcosA(sinA−cosA)+cos2AsinA(cosA−sinA)

LHS=sin3A−cos3AsinAcosA(sinA−cosA)

We know that a3−b3=(a−b)(a2+b2+ab)

LHS=sin2A+cos2A+sinAcosAsinAcosA

LHS=tanA+cotA+1=RHS

Hence Proved!

Answered by kourg383
1

Answer:

ANSWER

1−cotA

tanA

+

1−tanA

cotA

=1+secAcscA

Taking L.H.S.-

1−cotA

tanA

+

1−tanA

cotA

=

1−(

tanA

1

)

tanA

+

1−tanA

(

tanA

1

)

=

tanA−1

tan

2

A

+

tanA(1−tanA)

1

=

tanA(1−tanA)

1−tan

3

A

=

tanA(1−tanA)

(1−tanA)(1+tanA+tan

2

A)

(∵a

3

−b

3

=(a−b)(a

2

+ab+b

2

))

=

tanA

sec

2

A+tanA

(∵1+tan

2

A=sec

2

A)

=1+

tanA

sec

2

A

=1+

cosAsinA

1

=1+secAcscA

= R.H.S.

Hence proved.

Similar questions