CBSE BOARD X, asked by rakshitgoel7392, 9 months ago

prove that
tan A/(1-cotA)+cotA/(1-tanA)=1+secAcosecA​

Attachments:

Answers

Answered by seemadevibhandari
0

Explanation:

tanA/(1-cotA) +cotA/(1-tanA)

=tanA/(1–1/tanA) +cotA/(1-tanA)

=tan^2A/(tanA-1) +cotA/(1-tanA)

=-tan^2A/(1-tanA) +cotA/(1-tanA)

=(-tan^2A+cotA)/(1-tanA)

=(-tan^2A+1/tanA)/(1-tanA)

=(-tan^3A+1)/tanA(1-tanA)

=(1-tan^3A)/tanA(1-tanA)

=(1-tanA)(1+tanA+tan^2A)/tanA(1-tanA)

=(1+tanA+tan^2A)/tanA

=(1+tan^2A+tanA)/tanA

=(sec^2A+tanA)/tanA

=sec^2A/tanA +tanA/tanA

=1/cos^2AtanA+1

=cosA/cos^2AsinA+1

=1/cosAsinA+1

=secAcosecA+1

How do I prove that tanA/1-cotA + cotA /1- tanA = 1+ secA. cosecA?

How do you prove that, tanA/1-cotA + CotA/1-tanA is equal to 1+tanA+cotA?

How do I show that tanA/ (1-cotA) +cotA/ (1-tanA) =secAcosecA+1?

How do I prove that: (1+sec2A) (1+sec4A) (1+sec8A) = tan8A.cotA?

If (tanA/1-cotA) + (cotA/ 1-tanA) =secAcosecA+1?

Easiest Approach…

Hope this helps…

I hope this answer helps .

Become a data scientist: The hottest job of the 21st century.

How do you prove that tanA/ (1-cotA) +cotA/ (1-tanA) = 1+tanA+cotA?

How can I prove that: (1 / tan3A + tanA) - (1 / cot3A + cotA) = cot4A?

How do I prove: [math]\frac{\tan A}{1-\cot A} +\frac{\cot A}{1-\tan A} = \sec A\csc A + 1[/math]?

How do you prove that sinA(1+tanA)+cosA(1+cotA)=secA+cosecA?

How do you prove that (tan A) / (1-cot A) +cot A/ (1-tan A) =1+sec A cosec A?

tanA/(1-cotA) + cotA/(1-tanA)

sin^2 A/cosA(sinA-cosA) - cos^2 A/sinA(sinA-cosA)

1/(sinA-cosA) {(sin^3A - cos^3A)/sinA cosA}

1/(sinA-cosA){(sinA - cosA)(sin^2A+sinAcosA+cos^2A)/sinAcosA}

(1+sinAcosA)/sinAcosA

secAcosecA + 1

There could be shorter methods to be identified if we spend time, but I hit on the following proof.

LHS = (sinA/cosA)/(1-cosA/sinA) + (cosA/sinA)/(1-sinA/cosA)

=(sinA*sinA/cosA)/(sinA-cosA) + (cosA*cosA/sinA)/(cosA-sinA)

=(sin^2A/cosA)/(sinA-cosA) - (cos^A/sinA)/(sinA-cosA)

=(1/(sinA-cosA))*(sin^3A/sinAcosA - cos^3A/sinAcosA)

=(1/(sinA-cosA))*(Sin^3A-cos^3A)/sinAcosA

=(1/sinAcosA)*(sin^3A-cos^3A)/(sinA-cosA)

=(1/sinAcosA)(sin^2A+cos^2A+sinAcosA) {because (x^3-y^3)/(x-y)=x^2+y^2+xy}

= (1/sinAcosA) * (1+sinAcosA)

= (1/sinAcosA) + 1

= (1/sinA*1/cosA)+1

=secAcosecA+1=RHS

What are the best video lectures for preparation for the GATE mechanical engineering?

I am sure you do not want to just clear cut-off in GATE but you want to do it with top rank. And for that, I will highly recommend you the EXERGIC Video Course. And simply giving my answer to the ‘best’ video lectures will not be justified without explaining what makes it best. The answer w

See,in trigonometric questions it is always best to solve it in cosx and sinx

So, your left hand side becomes,

(sin^2x)÷((sinx-cosx)cosx) - (cos^2x)((sinx-cosx)sinx)

Now once you reached here, take least common factor or LCM, hence equation simplifies as

(sin^3x - cos^3x)÷((sinx-cosx)sinx.cosx)

In numerator use, a^3 - b^3 =(a-b)(a^2+b^2 + ab)

And sin^2x + cos^2x = 1.

So you will get your equation as,

(1+ sinx.cosx)(sinx-cosx)÷(sinx-cosx)(sinx.cosx)

So removing (sinx-cosx) from both numerator and denominator, you will reach at,

(1+sinx.cosx)÷(sinx.cosx)

And it is equal to secx.cosecx + 1

If u dont understand any step ask me….

Here it is…….

Hope it helps………

Similar questions