Math, asked by jaswanthkannan2502, 9 months ago

Prove that tan A -1+sec A / tan A +1 -sec A = sec a + tan A

Answers

Answered by SillySam
3

To prove:

 \sf \dfrac{tan \: a - 1 + sec \: a}{tan \: a \:  + 1 - sec \: a}  = sec \: a + tan \: a

Identities to be used in doing :

  • 1 + tan² A = sec² A
  • a² - b² = ( a + b) ( a - b)

Using identity

 \tt \because 1 +  {tan}^{2} a =  {sec}^{2} a \\   \therefore \tt1 =  {sec}^{2} a -  {tan}^{2} a

 \tt\frac{tan\: a - ({sec}^{2}a -  {tan}^{2}a) + sec \: a }{tan \: a + 1 - sec \: a}  \\  \\  \bf using \: identity  \\  \\  \bf  {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  \\  \implies \tt \frac{tan \: a + sec \: a -  \{(sec \: a + tan \: a)(sec \: a  - tan \: a)\}}{tan \: a + 1 - sec \: a}

Now , Taking Tan A + Sec A common

\implies \ \tt\frac{tan \: a + sec \: a(1 - (sec \: a - tan \: a)}{tan \: a + 1 - sec \: a}  \\  \\  \implies \tt \frac{tan \: a + sec \: a(1 - sec \: a + tan \: a)}{tan \: a + 1 - sec \: a}  \\  \\  \tt \implies \frac{tan \: a + sec \: a \cancel{(tan \: a + 1 - sec \: a)}} {\cancel{tan \: a + 1 - sec \: a}} \\  \\  \implies \boxed{\boxed{\tt tan \: a + sec \: a}}

Hence Proved

Similar questions