Math, asked by aurhobandyopadhyay86, 1 year ago

prove that tan a + 2 tan 2a + 4cot 4a=cot a

Answers

Answered by SmãrtyMohït
3
❤❤here is your answer ✌ ✌

first of all, we find one important results .
      \begin{lgathered}cotA - tanA = \frac{1}{tanA} - tanA \\ = \frac{1-tan^2A}{tanA} \\ = \frac{2(1-tan^2A)}{2tanA} \\= 2cot2A\end{lgathered}cotA−tanA=tanA1​−tanA=tanA1−tan2A​=2tanA2(1−tan2A)​=2cot2A​ 
hence, 
cotA - tanA  = 2cot2A
cotA = 2cot2A + tanA use this application here,


so, 
tanA + 2tan2A + 4{tan4A +2cot8A}
= tanA + 2tan2A + 4cot4A  by using above application 
= tanA + 2{tan2A + 2cot4A}
= tanA + 2cot2A by using above application
=cotA by using above application

hence,
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cotA 
Similar questions