Prove that, tan(A + B) - tan(A - B) = sin 2 B÷ (cos²B- sin²A)
Answers
Answered by
0
Answer:
tan(A+B)−tan(A−B)
=tanA+tanB1−tanAtanB−tanA−tanB1+tanAtanB
=(tanA+tanB)(1+tanAtanB)−(tanA−tanB)(1−tanAtanB)(1−tanAtanB)(1+tanAtanB)
=2tanB+2tan2AtanB(1−tan2Atan2B)⋅cos2Acos2Bcos2Acos2B
=2sinBcos2AcosB+2sin2AsinBcosBcos2Acos2B−sin2Asin2B
=2sinBcosB(cos2A+sin2A)(1−sin2A)cos2B−sin2A(1−cos2B)
=sin(2B)(1)cos2B−sin2Acos2B−sin2A+sin2Acos2B
=sin(2B)cos2B−sin2A
Answered by
0
your question is wrong,,
there should be sin2B/cos(A+B). cos(A-B)
Attachments:
Similar questions