Math, asked by kunalsinghrajbiraj45, 1 year ago

Prove that Tan (a-b) +Tan (b-c) +Tan (c-a)=Tan (a-b).Tan (b-c).Tan (c-a).

Answers

Answered by Khushideswal111
38

Answer:


Step-by-step explanation:

We have to prove : tan(A - B) + tan(B - C) + tan(C - A) = tan(A - B).tan(B - C).tan(C - A)


we know the formula ,

Tan( x + y + z) = {tanx + tany + tanz - tanx.tany.tanz}/{1 - tanx.tany - tany.tanz - tanz.tanx } use this here,


(A - B) + (B - C) + (C - A) = 0

taking tan both sides,

Tan{(A - B) + (B - C) + (C - A)} = tan0 = 0

⇒ {tan(A - B) + tan(B - C) + tan(C - A) - tan(A - B).tan(B - C).tan(C - A)}/{1 - tan(A - B).tan(B - C) - tan(B - C).tan(C - A) - tan (C - A).tan(A - B)} = 0

⇒tan(A - B) + tan(B - C) + tan(C - A) - tan(A - B).tan(B -C).tan(C - A) = 0

⇒tan(A - B) + tan(B - C) + tan(C - A) = tan(A - B).tan(B - C).tan(C - A)

Hence, proved//


Answered by bandana2681
14

Answer:

Hope this helps you. Please follow me and mark it as the BRAINLIEST ANSWER.

Attachments:
Similar questions