Math, asked by chowc780, 9 months ago

Prove that tan (A+B) x tan (A-B)= cos²B- cos²A by cos² B-sin²A​

Answers

Answered by shadowsabers03
1

Question:-

Prove that \displaystyle\sf {\tan (A+B)\tan (A-B)=\dfrac {\cos^2B-\cos^2A}{\cos^2B-\sin^2A}}

Solution:-

\displaystyle\longrightarrow\sf {LHS}

\displaystyle\longrightarrow\sf {\tan (A+B)\tan (A-B)}

\displaystyle\longrightarrow\sf {\dfrac {\sin (A+B)\sin (A-B)}{\cos (A+B)\cos (A-B)}}

\displaystyle\longrightarrow\sf {\dfrac {[\sin A\cos B+\cos A\sin B][\sin A\cos B-\cos A\sin B]}{[\cos A\cos B-\sin A\sin B][\cos A\cos B+\sin A\sin B]}}

\displaystyle\longrightarrow\sf {\dfrac {\sin^2 A\cos^2B-\cos^2A\sin^2 B}{\cos^2A\cos^2 B-\sin^2A\sin^2 B}}

\displaystyle\longrightarrow\sf {\dfrac {(1-\cos^2 A)\cos^2B-\cos^2A(1-\cos^2 B)}{(1-\sin^2A)\cos^2 B-\sin^2A(1-\cos^2 B)}}

\displaystyle\longrightarrow\sf {\dfrac {\cos^2B-\cos^2 A\cos^2B-\cos^2A+\cos^2A\cos^2 B}{\cos^2B-\sin^2A\cos^2 B-\sin^2A+\sin^2A\cos^2 B}}

\displaystyle\longrightarrow\sf {\dfrac {\cos^2B-\cos^2A}{\cos^2B-\sin^2A}}

\displaystyle\longrightarrow\sf {RHS}

Hence Proved!

Similar questions