prove that tan a by 1 minus cot A + cot a by 1 minus Tan a equal to 1 + tan A + cot a equal to 1 + sec a + cosec A
Answers
Correct Question
Prove that tanA/(1 - cotA) + cotA/(1 - tanA) = 1 + tanA + cotA = 1 + secA.cosecA
To Prove
tanA/(1 - cotA) + cotA/(1 - tanA) = 1 + tanA + cotA = 1 + secA.cosecA
Proof
Taking L.H.S.
⇒ tanA/(1 - cotA) + cotA/(1 - tanA)
We know that, tanA = sinA/cosA and cotA = cosA/sinA
⇒
⇒
⇒
⇒
Used identity: (a - b)³= (a - b) (a² + b²+ ab)
⇒
⇒
Also, sin²A + cos²A = 1
⇒ (1 + cosA.sinA)/(cosA.sinA)
⇒ 1/cosA.sinA + cosA.sinA/cosA.sinA
Now, 1/cosA = secA and 1/sinA = cosecA
⇒ secA.cosecA + 1
Now take, 1+ tanA + cotA
⇒ 1+ sinA/cosA + cosA/sinA
⇒
⇒ (1 + cosA.sinA)/(cosA.sinA)
⇒ 1/cosA.sinA + cosA.sinA/cosA.sinA
⇒ secA.cosecA + 1
Hence, proved
||✪✪ QUESTION ✪✪||
Prove That, (TanA/(1 - CotA) + cotA/(1 - TanA) = 1 + TanA + cotA = 1 + SecA * cosecA ?
|| ✰✰ ANSWER ✰✰ ||
→ (TanA/(1 - CotA) + cotA/(1 - TanA)
Putting CotA = (1/TanA) we get,
→ (TanA/( 1 - (1/TanA)) + (1/TanA) / (1 - TanA)
→ Tan²A/(TanA - 1) + 1/TanA(1 - TanA)
Taking (-1) common now,
→ Tan²A/(TanA - 1) - 1/TanA(TanA - 1)
Taking LCM Now,
→ (Tan³A - 1) /TanA(TanA - 1)
→ (Tan³A - 1³) /TanA(TanA - 1)
Using (a³ - b³) = (a - b)(a² + b² + ab) in Numerator now,
→ [ (TanA - 1)(Tan²A + TanA + 1) ] / (TanA(TanA - 1))
(TanA - 1) will be cancel From both sides now,
we get,
______________________________
→ (Tan²A + TanA + 1) / TanA ----------- Equation (1) .
Assume This As Equation (1) now, we will prove Our RHS part With This now :-
→ (Tan²A + TanA + 1) / TanA
we know That, (Tan²A + 1) = sec²A , so, using this we get,
→ (sec²A + TanA) / TanA
→ (sec²A/TanA) + 1
Now, putting sec²A = (1/cos²A) and TanA = (sinA/cosA),
→ [ (1/cos²A) / (sinA/cosA) ] + 1
→ (1/sinA * cosA) + 1
Now, we know That, (1/sinA) = cosecA and (1/cosA) = secA , So, Finally we get,
→ 1 + secA * cosecA . ✪✪ Hence Proved ✪✪
_____________________________
Now, Again, Solving From Equation (1) , we get :-
→ (Tan²A + TanA + 1) / TanA
→ (Tan²A/TanA) + (TanA/TanA) + (1/TanA)
→ TanA + 1 + (1/TanA)
As we know , (1/TanA) = cotA, So,