Math, asked by adityeshd, 2 months ago

Prove that :
( tan A + cot A ) sin A×cos A = 1​

Answers

Answered by ruchimehtabhansali
1

Answer:

step by step explanation pls mark me as the brainleist

Attachments:
Answered by chiggi2k03
1

Answer:

Given:           LHS = ( tan A + cot A ) sin A×cos A

                     RHS = 1

Taking LHS,

   = ( tan A + cot A ) sin A×cos A

   =  ( sin A / cos A + cos A / sin A ) sin A×cos A

         [∵ tan A = sin A/ cos A and cot A = cos A/ sin A]

   = {(sin²A + cos²A)/ sin A × cos A} sin A×cos A   [∵ by taking LCM]

   =  (1 / sin A×cos A ) sin A×cos A                          [∵sin²A + cos²A = 1]

   = 1

∴ So here LHS = RHS i.e,   ( tan A + cot A ) sin A×cos A = 1​

                           

                         hence proved..

plz mark this as brainliast.

Similar questions