prove that tan A +cot A/
tan B+cot B
sin B.cos B
sin A.cos A
Answers
Answered by
6
Step-by-step explanation:
tanA = sinA /cosA
cot A= cos A/sinA
tanB = sinB /cosB
cotB =cosB/sinB
tanA+cotA/tanB+cotB
= sinA/cosA+ cosA/sinA ÷ sinB/cosB +cosB/sinB
on taking LCM and solving
sin^2A+cos^2A/sinAcosA÷ sin^2B+cos^2B/sinBcosB
using identity sin^2x +cos^2x= 1
LHS =. 1/sinA cosA÷ 1/sinBcosB
= 1/sinAcosA × sinBcosB/1
= sinBcosB/sinAcosA
LHS =RHS
hence proved
please mark BRAINIEST
Answered by
0
Answer:
LHS=
cotB+tanA
cotA+tanB
=
tanB
1
+tanA
tanA
1
+tanB
=
tanB
1+tanAtanB
tanA
1+tanAtanB
=
tanA
tanB
=cotAtanB=RHS
hope u like it
Similar questions