Math, asked by mshraju1970, 11 months ago

prove that tan A +cot A/
tan B+cot B
sin B.cos B
sin A.cos A​

Answers

Answered by madhutiwari793
6

Step-by-step explanation:

tanA = sinA /cosA

cot A= cos A/sinA

tanB = sinB /cosB

cotB =cosB/sinB

tanA+cotA/tanB+cotB

= sinA/cosA+ cosA/sinA ÷ sinB/cosB +cosB/sinB

on taking LCM and solving

sin^2A+cos^2A/sinAcosA÷ sin^2B+cos^2B/sinBcosB

using identity sin^2x +cos^2x= 1

LHS =. 1/sinA cosA÷ 1/sinBcosB

= 1/sinAcosA × sinBcosB/1

= sinBcosB/sinAcosA

LHS =RHS

hence proved

please mark BRAINIEST

Answered by Prashant2795
0

Answer:

LHS=

cotB+tanA

cotA+tanB

=

tanB

1

+tanA

tanA

1

+tanB

=

tanB

1+tanAtanB

tanA

1+tanAtanB

=

tanA

tanB

=cotAtanB=RHS

hope u like it

Similar questions