Prove that tan A + Sec A - 1 / tan A - Sec A + 1 = 1 + sin A + cos A
Answers
Answered by
32
Answer:
(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cos A
multiply LHS by cosA /cosA to get
(sinA+1-cosA) / (sinA-1+cosA)
multiply again by cosA/cosA to get
(sinA.cosA+cosA-cos^2A) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1-sin^2A) ) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1+sinA)(1-sinA) ) / cosA(sinA-1+cosA)
= ( (1+sinA)(cosA-1+sinA) ) / cosA(sinA-1+cosA)
= (1+sinA)/cosA
FOLLOW ME
Step-by-step explanation:
Answered by
3
Answer:
Similar questions