Math, asked by Anonymous, 1 year ago

Prove that tan A + Sec A - 1 / tan A - Sec A + 1 = 1 + sin A + cos A

Answers

Answered by Anonymous
32

Answer:

(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cos A

multiply LHS by cosA /cosA to get  

(sinA+1-cosA) / (sinA-1+cosA)  

multiply again by cosA/cosA to get  

(sinA.cosA+cosA-cos^2A) / cosA(sinA-1+cosA)  

= ( cosA(1+sinA) - (1-sin^2A) ) / cosA(sinA-1+cosA)  

= ( cosA(1+sinA) - (1+sinA)(1-sinA) ) / cosA(sinA-1+cosA)  

= ( (1+sinA)(cosA-1+sinA) ) / cosA(sinA-1+cosA)  

= (1+sinA)/cosA

FOLLOW ME

Step-by-step explanation:

Answered by Saniaray85
3

Answer:

 \frac{ \tan( \alpha ) +   \sec( \alpha )   - 1}{ \tan( \alpha )  -  \sec( \alpha )  + 1 }  \\ we \: know \: that \:  \\  { \tan( \alpha ) }^{2}  -  { \sec( \alpha ) }^{2}  = 1 \\ ( \tan( \alpha )  +  \sec( \alpha ) )( \tan( \alpha )  -  \sec( \alpha ) ) = 1 \\ on \: putting \: the \: value \: in \: question \:  \\  \frac{( \tan( \alpha ) +  \sec( \alpha )  )( \tan( \alpha ) -  \sec( \alpha )  - 1 )}{ \tan( \alpha ) -  \sec( \alpha )  - 1 }  \\  \tan( \alpha )  +  \sec( \alpha )  \\ now \: take  \\ \: rhs \\  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }  \\  \tan( \alpha )  +  \sec( \alpha )  \\ so \\ lhs = rhs

Similar questions