Prove That :Tan A÷Sec A - 1 + Tan A/Sec A + 1 = 2 Cosec A
Answers
Answered by
10
tanA/secA-1 + tanA/secA+1 = 2cosecA
Taking L.H.S
tanA/secA-1 + tanA/secA+1
tanA(secA+1) + tanA(secA-1) / (secA-1)(secA+1)
tanA[ (secA-1)+(secA+1) ] / sec^2A-1
tanA[ secA-1+secA+1 ] / tan^2A
secA-1+secA+1 /tanA
secA+secA / tanA
2secA / tanA
2secA × 1/tanA
2secA × cotA
2secA × cosA/sinA
2×1/cosA × cosA/sinA
cosA and cosA will be cancel out
then,
2/sinA
2×1/sinA
2cosecA
Hence proved
Taking L.H.S
tanA/secA-1 + tanA/secA+1
tanA(secA+1) + tanA(secA-1) / (secA-1)(secA+1)
tanA[ (secA-1)+(secA+1) ] / sec^2A-1
tanA[ secA-1+secA+1 ] / tan^2A
secA-1+secA+1 /tanA
secA+secA / tanA
2secA / tanA
2secA × 1/tanA
2secA × cotA
2secA × cosA/sinA
2×1/cosA × cosA/sinA
cosA and cosA will be cancel out
then,
2/sinA
2×1/sinA
2cosecA
Hence proved
Similar questions