prove that (tan A+ sec A)-(sec A+tan A)(sec A-tan A)=(tan A +sec A)(1-(sec A-tan A))
Answers
Answered by
3
(tanA + secA) - (secA + tanA) ( secA - tanA)
= (tanA + secA) - (sec^2 A - tan^2A)
= (tanA + secA ) - 1
**************************************************
(tanA + secA) - (secA + tanA) (secA - tan A)
= (tanA + secA) - (tanA + secA) (secA - tanA) [ (a+b) = (b + a)]
= (tanA + secA) ( 1 - (secA - tanA) )
= (tanA + secA) - (sec^2 A - tan^2A)
= (tanA + secA ) - 1
**************************************************
(tanA + secA) - (secA + tanA) (secA - tan A)
= (tanA + secA) - (tanA + secA) (secA - tanA) [ (a+b) = (b + a)]
= (tanA + secA) ( 1 - (secA - tanA) )
Similar questions