Math, asked by shiza7, 18 days ago

Prove that (tan A + sin A)/(tan A - sin A) = (sec A + 1)/(sec A - 1).

• Quality \:  answer \:  mark \:  as  \: Brainliest !!​
• Spammers  \: Stay  \: Away!!.​

Answers

Answered by Anonymous
139

\huge\underline{\rm{☆To \ Prove}}

\rm{\dfrac{\ tanA + \ sinA}{\ tanA - \ sinA} = \dfrac{\ secA + 1}{\ secA - 1}}

  \\

\rm{LHS = \dfrac{\ tanA + \ sinA}{\ tanA - \ sinA}} \\  \\

\rm{ = \dfrac{\dfrac{\ sinA}{\ cosA} + \ sinA}{\dfrac{\ sinA}{\ cosA} - \ sinA}} \\  \\

\rm{ = \dfrac{  \dfrac{ \ sinA +  \ sinA  \ cosA  }{ \ cosA }}{\dfrac{ \ sinA -  \ sinA \ cosA}{ \ cosA}}} \\  \\

\rm{ = \dfrac{\ sinA + \ sinA\ cosA}{\ sinA - \ sinA \ cosA}} \\  \\

\rm{ = \dfrac{\ sinA(1 + \ cosA}{\ sinA(1 - \  cosA}} \\  \\

\rm{ = \dfrac{\ sinA + \ dfrac{1}{\ secA}}{\ sinA - \dfrac{1}{\ secA}}} \\  \\

\rm{ = \dfrac{\dfrac{\ secA + 1}{\ secA}}{\dfrac{\ secA - 1}{\ secA}}} \\  \\

\rm{ = \dfrac{\ secA + 1}{\ secA - 1}= RHS} \\  \\

\red{\boxed{\rm{Hence \ Proved✔}}}

  \\

#NAWABZAADI

Answered by DarkMellow
83

HeY TheRe!

$ \Large \mathcal \red{LHS :}$

 \sf{ \frac{(tan A + sin A)}{(tan A - sin A) }= \frac{ (sec A + 1)}{(sec A - 1)}} \\

 {\mapsto\sf{ \frac{ (tan A + sin A)}{(tan A – sin A)}}} \\

 {\mapsto \sf{\frac{ [ (\frac{sin A}{cos A}) + sin A]}{ [( \frac{sin A}{cos A}) – sin A]}}} \\

{ \mapsto \sf{  \frac{[sin A({ \frac{1}{cos A}} + 1)]}{[sin A({ \frac{1}{cos A} }– 1)]}}} \\

 { :  \implies \bf \red{ \frac{ (sec A + 1)}{(sec A – 1)}}} \\

$ \Large \mathcal \blue{: RHS}$

  • Hence Proved...!!!!

 \\ \\ \\

⠀⠀⠀⠀DᴀʀᴋMᴇʟʟᴏᴡ

Similar questions