Math, asked by palakdhiman05, 9 months ago

prove that
tan A + tan (60° + A) + tan (120° + A) = 3 tan 3A​

Answers

Answered by krushnawarvade4
0

Answer:

Step-by-step explanation:69

Answered by ayanadosi71
2

ANSWER ~

The proof is as follows:

Step 1:

Given Data:

Tan A + tan(60+A)+tan(120+A)= 3.tan3A

To Prove: LHS =RHS

Step 2:

Left hand side:

Tan A + (tan 60 + tan A)/(1-tan60.tanA) + (tan (120) + tan A )/(1-tan120.tanA)

Step 3:

\tan A+\frac{\sqrt{3}+\tan A}{1-\sqrt{3}+\tan A}+\frac{\tan A-\sqrt{3}+1}{1+\sqrt{3}+\tan A}tanA+

1−

3

+tanA

3

+tanA

+

1+

3

+tanA

tanA−

3

+1

Step 4:

\tan A+\frac{\left.\sqrt{3}++3 \cdot \tan A+\tan A+\sqrt{3}+\tan ^{\wedge} 2 A+\tan A-\sqrt{3}+-\sqrt{3}+\tan ^{\wedge} 2 A+3 \tan A\right]}{1-3 \tan ^{\wedge} 2 A}tanA+

1−3tan

2A

3

++3⋅tanA+tanA+

3

+tan

2A+tanA−

3

+−

3

+tan

2A+3tanA]

Step 5:

\tan A+\frac{8 \tan A}{1-3 \tan 2 A}tanA+

1−3tan2A

8tanA

Step 6:

\frac{9 \tan A-3 \cdot \tan 3 A}{1-3 \tan 2 A}

1−3tan2A

9tanA−3⋅tan3A

Step 7:

= 3.tan3A (Equal to RHS)

Therefore LHS=RHS

Hence it is satisfied .

PLEASE MARK ME AS THE BRAINLIEST .

Similar questions