Prove that. Tan alpha +cotA=2cosec2A & deduce that tan75°+cot75°=4
Answers
Answered by
3
Proof :
L.H.S. = tanA + cotA
= sinA/cosA + cosA/sinA
= (sin²A + cos²A)/(sinA cosA)
= 1/(sinA cosA) [∵ sin²A + cos²A = 1 ]
= 2/(2 sinA cosA)
= 2/sin2A [∵ 2 sinA cosA = sin2A ]
= 2 cosec2A
= R.H.S. [Proved]
Answer :
Now, tan75° + cot75°
= 2 cosec (2 × 75°)
= 2 cosec150°
= 2 cosec(90° + 60°)
= 2 sec60° [ ∵ cosec (90° + A) = secA ]
= 2 × 2
= 4 [Proved]
Hope it helps! (:
L.H.S. = tanA + cotA
= sinA/cosA + cosA/sinA
= (sin²A + cos²A)/(sinA cosA)
= 1/(sinA cosA) [∵ sin²A + cos²A = 1 ]
= 2/(2 sinA cosA)
= 2/sin2A [∵ 2 sinA cosA = sin2A ]
= 2 cosec2A
= R.H.S. [Proved]
Answer :
Now, tan75° + cot75°
= 2 cosec (2 × 75°)
= 2 cosec150°
= 2 cosec(90° + 60°)
= 2 sec60° [ ∵ cosec (90° + A) = secA ]
= 2 × 2
= 4 [Proved]
Hope it helps! (:
Answered by
1
There is the little error in the question, Instead of the tan alpha it will be tan A. Thus we need to prove,
tan A + cot A=2 Cosec 2A
From L.H.S.,
tan A + cot A = Sin A/Cos A + Cos A/ Sin A
= (Sin² A + Cos² A)/Sin A CosA [Taking L.C.M.]
= 1/SinACosA [∵ Sin² A + Cos² A = 1]
= 2/2 SinA CosA
= 2/Sin 2A [∵ Sn 2A = 2 Sin A Cos A]
= 2 × Cosec 2A [∵ Sin 2A = 1/Cosec 2A]
= 2 Cosec 2A
= R.H.S.
∵ L.H.S. is proved to be equal to R.H.S.
∴ Relation is Proved.
Now,
tan 75° + cot 75° = tan(30 + 45) + cot (90 - 15)
= tan (30 + 45) + tan 15
= tan (45 + 30) + tan ( 45 - 30)
Now, using the formula,
tan (A + B)= tan A +tan B/(1 - tanA tanB)
tan (A - B) = tan A - tan B/(1 + tan AtanB)
∴ tan 75° + cot 75° = (tan45° + tan 30°)/(1 - tan45°tan30°) + (tan 45° - tan30°)/(1 + tan45°tan30°)
= (1 + 1/√3)/(1 - 1/√3) + (1 - 1/√3)/(1 + 1/√3)
= [(1 + 1/√3)² + (1 - 1/√3)²]/[(1)² - (1/√3)²]
= [1 + 1/3 + 2/√3 + 1 + 3 - 2√3]/[1 - 1/3]
= [2 + 2/3]/[1 - 1/3]
= [6 + 2]/[2]
= 8/2
= 4
Hence Proved.
Hope it helps.
tan A + cot A=2 Cosec 2A
From L.H.S.,
tan A + cot A = Sin A/Cos A + Cos A/ Sin A
= (Sin² A + Cos² A)/Sin A CosA [Taking L.C.M.]
= 1/SinACosA [∵ Sin² A + Cos² A = 1]
= 2/2 SinA CosA
= 2/Sin 2A [∵ Sn 2A = 2 Sin A Cos A]
= 2 × Cosec 2A [∵ Sin 2A = 1/Cosec 2A]
= 2 Cosec 2A
= R.H.S.
∵ L.H.S. is proved to be equal to R.H.S.
∴ Relation is Proved.
Now,
tan 75° + cot 75° = tan(30 + 45) + cot (90 - 15)
= tan (30 + 45) + tan 15
= tan (45 + 30) + tan ( 45 - 30)
Now, using the formula,
tan (A + B)= tan A +tan B/(1 - tanA tanB)
tan (A - B) = tan A - tan B/(1 + tan AtanB)
∴ tan 75° + cot 75° = (tan45° + tan 30°)/(1 - tan45°tan30°) + (tan 45° - tan30°)/(1 + tan45°tan30°)
= (1 + 1/√3)/(1 - 1/√3) + (1 - 1/√3)/(1 + 1/√3)
= [(1 + 1/√3)² + (1 - 1/√3)²]/[(1)² - (1/√3)²]
= [1 + 1/3 + 2/√3 + 1 + 3 - 2√3]/[1 - 1/3]
= [2 + 2/3]/[1 - 1/3]
= [6 + 2]/[2]
= 8/2
= 4
Hence Proved.
Hope it helps.
Similar questions