prove that tan alpha=sin2alpha/1+cos2alpha and deduce that tan22.5° =√2-1
wixmatwishwa:
there are some mistakes
Answers
Answered by
26
tan x=sin2x/(1+cos2x)
r.h.s =sin2x/(1+cos2x)
=2sinx.cosx/(2cos^(x) -1 +a)
=tanx
l.h.s=r.h.s//
x =22.5
tan(22.5) =sin (2.22.5)/(1+cos(2.22.5))
=sin(45)/(1 +cos(45))
=1/1+2root2
=root2 -1//
r.h.s =sin2x/(1+cos2x)
=2sinx.cosx/(2cos^(x) -1 +a)
=tanx
l.h.s=r.h.s//
x =22.5
tan(22.5) =sin (2.22.5)/(1+cos(2.22.5))
=sin(45)/(1 +cos(45))
=1/1+2root2
=root2 -1//
Answered by
12
Answer:
tanA=sin2A/1+cos2A
tan22.5=√2-1
Step-by-step explanation:
tanA=sin2A/1+cos2A
RHS=sin2A/1+cos2A
=2sinA.cosA/1+2cos^2A-1
=2sinA/2cosA
=tanA
LHS=RHS
tan22.5=√2-1
LHS=√2-1
tan22.5=sin2(22.5)./1+cos2(22.5)
=2sin(22.5).cos2(22.5)/1+2cos^2(22.5)-1
=2sin22.5/2cos22.5
=tan22.5
LHS=RHS
Similar questions