prove that, tan(B-C) + tan(C - A) + tan(A - B)
= tan(B-C) tan(C-A)tan(A - B)
Answers
Answered by
1
Answer:
We have to prove : tan(A - B) + tan(B - C) + tan(C - A) = tan(A - B).tan(B - C).tan(C - A)
we know the formula ,
Tan( x + y + z) = {tanx + tany + tanz - tanx.tany.tanz}/{1 - tanx.tany - tany.tanz - tanz.tanx } use this here,
(A - B) + (B - C) + (C - A) = 0
taking tan both sides,
Tan{(A - B) + (B - C) + (C - A)} = tan0 = 0
⇒ {tan(A - B) + tan(B - C) + tan(C - A) - tan(A - B).tan(B - C).tan(C - A)}/{1 - tan(A - B).tan(B - C) - tan(B - C).tan(C - A) - tan (C - A).tan(A - B)} = 0
⇒tan(A - B) + tan(B - C) + tan(C - A) - tan(A - B).tan(B -C).tan(C - A) = 0
⇒tan(A - B) + tan(B - C) + tan(C - A) = tan(A - B).tan(B - C).tan(C - A)
Hence, proved//
Similar questions