Math, asked by rekhayadav456, 3 months ago

Prove that:
tan Ѳ-cotѲ/sinѲ.cosѲ
= sec2 Ѳ – cosec2 Ѳ

Answers

Answered by agarwalniharika673
1

Answer:

hope it helps u mate....

Pls mark me brainliest

and don't forget to rate it

Attachments:
Answered by BrainlyRish
17

Given : tan Ѳ-cotѲ / sinѲ.cosѲ = sec² Ѳ – cosec² Ѳ

Exigency to Prove : tan Ѳ-cotѲ / sinѲ.cosѲ = sec² Ѳ – cosec² Ѳ

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \dag\:\:\bigg\lgroup \sf{ \dfrac{tan \theta - cot \theta }{ sin \theta \times cosec \theta } = sec^2 \theta - cos^2 \theta }\bigg\rgroup \\\\

⠀⠀Here ,

  •  \bf L.H.S \::  \sf   \dfrac{tan \theta - cot \theta }{ sin \theta \times cos \theta } \\
  •  \bf R.H.S \::  \sf  sec^2 \theta - cosec^2 \theta \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Solving \: the \: L.H.S \:  \::}}\\

 \bf L.H.S \::  \sf   \dfrac{tan \theta - cot \theta }{ sin \theta \times cos \theta } \\

 \qquad \longmapsto \:  \sf   \dfrac{tan \theta - cot \theta }{ sin \theta \times cos \theta } \\

 \qquad \longmapsto \:  \sf   \dfrac{ \dfrac{ sin \theta }{cos \theta } - cot \theta }{ sin \theta \times cos \theta } \qquad \:\bigg\lgroup \sf{ tan \theta = \dfrac{ sin \theta }{cos \theta } }\bigg\rgroup  \\

 \qquad \longmapsto \:  \sf   \dfrac{ \dfrac{ sin \theta }{cos \theta } - \dfrac{ cos \theta }{sin \theta } }{ sin \theta \times cos \theta } \qquad \:\bigg\lgroup \sf{ cot \theta = \dfrac{ cos \theta }{sin \theta } }\bigg\rgroup  \\

 \qquad \longmapsto \:  \sf   \dfrac{ \dfrac{ sin \theta }{cos \theta } - \dfrac{ cos \theta }{sin \theta } }{ sin \theta \times cos \theta } \\

 \qquad \longmapsto \:  \sf   \dfrac{ sin^2 \theta - cos ^2 \theta  }{ (sin \theta \times cos \theta)^2 } \\

 \qquad \longmapsto \:  \sf   \dfrac{ sin^2 \theta - cos ^2 \theta  }{ sin^2 \theta \times cos^2 \theta } \\

 \qquad \longmapsto \:  \sf   \dfrac{ sin^2 \theta  }{ sin^2 \theta \times cos^2 \theta } -  \dfrac{ cos^2 \theta  }{ sin^2 \theta \times cos^2 \theta } \\

 \qquad \longmapsto \:  \sf   \dfrac{ \cancel {sin^2 \theta}  }{ \cancel {sin^2 \theta} \times cos^2 \theta } -  \dfrac{\cancel {cos^2 \theta  }}{ sin^2 \theta \times \cancel {cos^2 \theta} } \\

 \qquad \longmapsto \:  \sf   \dfrac{ 1  }{  cos^2 \theta } -  \dfrac{ 1 }{ sin^2 \theta} \\

 \qquad \longmapsto \:  \sf   sec^2 \theta  -  \dfrac{ 1 }{ sin^2 \theta} \qquad \bigg\lgroup \sf{ sec \theta = \dfrac{ 1 \theta }{cos \theta } }\bigg\rgroup \\

 \qquad \longmapsto \bf L.H.S \:  \sf   sec^2 \theta  -   cosec^2 \theta  \\

Therefore,

  •  \bf L.H.S \::  \sf  sec^2 \theta - cosec^2 \theta \\
  •  \bf R.H.S \::  \sf  sec^2 \theta - cosec^2 \theta \\

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Proved \:}}}\\\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions