Prove that : tanθ – cotθ/sinθ cosθ = tan^2θ- cot^2θ
Answers
Answered by
0
Step-by-step explanation:
Now,
\cot \theta-\tan \thetacotθ−tanθ
=\dfrac{\cos \theta}{\sin \theta}-\dfrac{\sin \theta}{\cos \theta}=sinθcosθ−cosθsinθ
=\dfrac{\cos^2 \theta-\sin^2 \theta}{\cos \theta.\sin \theta}=cosθ.sinθcos2θ−sin2θ
=\dfrac{2\cos^2 \theta-1}{\sin \theta.\cos \theta}=sinθ.cosθ2cos2θ−1. [Since 1-\sin^2 \theta=\cos^2 \theta1−sin2θ=cos2θ]
Similar questions