Math, asked by laharipragna9785, 1 year ago

Prove that tan inverse 1/2+tan inverse 1/5=1/2 cos inverse 16/65

Answers

Answered by MaheswariS
14

consider,

tan^{-1}\frac{1}{2}+tan^{-1}\frac{1}{5}

Using,

\boxed{\bf\,tan^{-1}x+tan^{-1}y=tan^{-1}(\frac{x+y}{1-xy})}}

=tan^{-1}(\frac{\frac{1}{2}+\frac{1}{5}}{1-\frac{1}{2}*\frac{1}{5}})

=tan^{-1}(\frac{\frac{5+2}{10}}{1-\frac{1}{10}})

=tan^{-1}(\frac{\frac{7}{10}}{\frac{9}{10}})

=tan^{-1}(\frac{7}{9})=X(say)

\implies\,tanX=\frac{7}{9}

Using

\boxed{cos2A=\frac{1-tan^2A}{1+tan^2A}}

cos2X=\frac{1-tan^2X}{1+tan^2X}}

cos2X=\frac{1-\frac{49}{81}}{1+\frac{49}{81}}

cos2X=\frac{\frac{81-49}{81}}{\frac{81+49}{81}}

cos2X=\frac{\frac{32}{81}}{\frac{130}{81}}

cos2X=\frac{32}{130}

cos2X=\frac{16}{65}

\implies\,2X=cos^{-1}(\frac{16}{65})

\implies\,X=\frac{1}{2}cos^{-1}(\frac{16}{65})

\implies\boxed{\bf\,tan^{-1}\frac{1}{2}+tan^{-1}\frac{1}{5}=\frac{1}{2}cos^{-1}(\frac{16}{65})}

Similar questions