Math, asked by nipujit, 11 months ago

prove that........tan inverse 63/16=sin inverse 5/13+cos inverse 3/5

Answers

Answered by MaheswariS
2

\underline{\textbf{To prove:}}  

\mathsf{sin^{-1}\left(\dfrac{5}{13}\right)+cos^{-1}\left(\dfrac{3}{5}\right)=tan^{-1}\left(\dfrac{63}{16}\right)}  

\underline{\textbf{Solution:}}  

\underline{\textsf{Formula used:}}  

\boxed{\mathsf{tan^{-1}x+tan^{-1}y=tan^{-1}\left(\dfrac{x+y}{1-xy}\right)}}  

\mathsf{Take,\;sin^{-1}\left(\dfrac{5}{13}\right)=A}  

\implies\mathsf{sinA=\dfrac{5}{13}}  

\mathsf{cos^2A=1-sin^2A}  

\mathsf{cos^2A=1-\dfrac{25}{169}}  

\mathsf{cos^2A=\dfrac{169-25}{169}}  

\mathsf{cos^2A=\dfrac{144}{169}}  

\mathsf{cosA=\sqrt{\dfrac{144}{169}}}  

\mathsf{cosA=\dfrac{12}{13}}}  

\mathsf{tanA=\dfrac{sinA}{cosA}}  

\mathsf{tanA=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}}  

\mathsf{tanA=\dfrac{5}{12}}  

\implies\boxed{\mathsf{A=tan^{-1}\left(\dfrac{5}{12}\right)}}  

\mathsf{Take,\;cos^{-1}\left(\dfrac{3}{5}\right)=B}  

\implies\mathsf{cosB=\dfrac{3}{5}}  

\mathsf{sin^2B=1-cos^2A}  

\mathsf{sin^2B=1-\dfrac{9}{25}}  

\mathsf{sin^2B=\dfrac{25-9}{25}}  

\mathsf{sin^2B=\dfrac{16}{25}}  

\mathsf{sinB=\sqrt{\dfrac{16}{25}}}  

\mathsf{sinB=\dfrac{4}{5}}}  

\mathsf{tanB=\dfrac{sinB}{cosB}}  

\mathsf{tanB=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}}  

\mathsf{tanB=\dfrac{4}{3}}  

\implies\boxed{\mathsf{B=tan^{-1}\left(\dfrac{4}{3}\right)}}  

\mathsf{Now,}  

\mathsf{sin^{-1}\left(\dfrac{5}{13}\right)+cos^{-1}\left(\dfrac{3}{5}\right)}  

\mathsf{=tan^{-1}\left(\dfrac{5}{12}\right)+tan^{-1}\left(\dfrac{4}{3}\right)}  

\mathsf{=tan^{-1}\left(\dfrac{\dfrac{5}{12}+\dfrac{4}{3}}{1-\dfrac{5}{12}{\times}\dfrac{4}{3}}\right)}  

\mathsf{=tan^{-1}\left(\dfrac{\dfrac{15+48}{36}}{1-\dfrac{20}{36}}\right)}  

\mathsf{=tan^{-1}\left(\dfrac{\dfrac{63}{36}}{\dfrac{36-20}{36}}\right)}  

\mathsf{=tan^{-1}\left(\dfrac{\dfrac{63}{36}}{\dfrac{16}{36}}\right)}  

\mathsf{=tan^{-1}\left(\dfrac{63}{16}\right)}  

\implies\boxed{\mathsf{\mathsf{sin^{-1}\left(\dfrac{5}{13}\right)+cos^{-1}\left(\dfrac{3}{5}\right)=tan^{-1}\left(\dfrac{63}{16}\right)}}}  

\underline{\textbf{Find more:}}

\underline{\textbf{Find more:}}

2tan^-1(tan(π/4-α/2)tan(π/4-β/2))=tan^-1(cosα.cosβ/sinα+sinβ)

https://brainly.in/question/10841205  

Answered by sandy1816
0

let \:  \:  \:  \:  {sin}^{ - 1}  \frac{5}{13}  = a \:  \:  \:  \:  \:  \:  {cos}^{ - 1}  \frac{3}{5}  = b \\  \\ sina =  \frac{5}{13}  \\  \\ cosa =  \sqrt{1 -  \frac{25}{169} }  \\  \\ cosa =  \sqrt{ \frac{144}{169} }  \\  \\ cosa =  \frac{12}{13}  \\  \\  {cos}^{ - 1}  \frac{3}{5}  = b \\  \\ cosb =  \frac{3}{5}  \\  \\ sinb =  \sqrt{1 -  \frac{9}{25} }  \\  \\ sinb =  \frac{4}{5}  \\  \\ tana =  \frac{sina}{cosa}  =  \frac{ \frac{5}{13} }{ \frac{12}{13} }  =  \frac{5}{12}  \\  \\ tanb =  \frac{ \frac{4}{5} }{ \frac{3}{5} }  =  \frac{4}{3}  \\  \\ tan(a + b) =  \frac{tana + tanb}{1 - tanatanb}  \\  \\ tan(a + b) =  \frac{ \frac{5}{12}  +  \frac{4}{3} }{1 -  \frac{5}{12} \times  \frac{4}{3}  }  \\  \\ tan(a + b) =  \frac{15 + 48}{36 - 20}  \\  \\  {tan}(a + b) =  \frac{63}{16}   \\  \\ a + b =  {tan}^{ - 1} ( \frac{63}{16}) \\  \\  {sin}^{ - 1}   \frac{5}{13}  +  {cos}^{ - 1}  \frac{3}{5}  =  {tan}^{ - 1}  \frac{63}{16}

Similar questions