Math, asked by kadiyamyashwanth2004, 5 months ago

Prove that
tan O / 1 - tan O - cot O / 1 - cot O = cos O + sin O /cos - sin O

Answers

Answered by Nathalie14
2

Answer:

We have,

tan

ϕ

1

tan

ϕ

cot

ϕ

1

cot

ϕ

,

=

tan

ϕ

1

tan

ϕ

1

tan

ϕ

(

1

1

tan

ϕ

)

,

=

tan

ϕ

1

tan

ϕ

1

tan

ϕ

tan

ϕ

1

tan

ϕ

,

=

tan

ϕ

1

tan

ϕ

1

tan

ϕ

1

,

=

tan

ϕ

1

tan

ϕ

+

1

1

tan

ϕ

,

=

tan

ϕ

+

1

1

tan

ϕ

,

=

sin

ϕ

cos

ϕ

+

1

1

sin

ϕ

cos

ϕ

,

=

{

sin

ϕ

+

cos

ϕ

cos

ϕ

}

÷

{

cos

ϕ

sin

ϕ

cos

ϕ

}

,

=

cos

ϕ

+

sin

ϕ

cos

ϕ

sin

ϕ

.

Step-by-step explanation:

Since,

tan

(

π

4

+

ϕ

)

=

tan

(

π

4

)

+

tan

ϕ

1

tan

(

π

4

)

tan

ϕ

,

=

1

+

tan

ϕ

1

tan

ϕ

, we have,

tan

ϕ

1

tan

ϕ

cot

ϕ

1

cot

ϕ

=

cos

ϕ

+

sin

ϕ

cos

ϕ

sin

ϕ

=

tan

(

π

4

+

ϕ

)

.

Similar questions