Math, asked by rohanmathias3067, 1 year ago

prove that :

tan [pi/4 + 1/2 cos-1 a/b] + tan[pi/4 - 1/2cos-1 a/b] = 2b/a

Answers

Answered by Anonymous
8
☆☆ranshsangwan☆

tan( pi/4+1/2cos^-1 a/b)+tan(pi/4+1/2cos^-1a/b)

=2b/a..
Answered by Anonymous
255

{\huge{\underline{\underline{\mathbb{SOLUTION:-}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

The equation to be proved true is this.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

tan( \frac{\pi}{4}  +  \frac{1}{2}cos {}^{-1} \frac{a}{b}  ) + tan( \frac{\pi}{4}  -  \frac{1}{4} cos {}^{-1}  \frac{a}{b} ) =  \frac{2b}{a}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To make the manipulation of the equations convenient, introduce one simplification substitution.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 = \frac{1}{2} cos {}^{ - 1}  \frac{a}{b}  = θ</p><p>

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Work on the left-hand side of the equation.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

tan( \frac{\pi}{4}  +  θ )  + tan( \frac{\pi}{4}  +  θ ) = \frac{1\: +\:tan\:θ} {1\:-\:tan\:θ}+ \frac{1\: +\:tan\:θ} {1\:-\:tan\:θ}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 = tan( \frac{\pi}{4}  +  θ )  + tan( \frac{\pi}{4}   -   θ )

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 =\frac{ (1 + tan\:θ) {}^{2}  +  (1  -  tan\:θ) {}^{2}}{1 -tan {}^{2}θ  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

= tan( \frac{\pi}{4}  + θ) + tan( \frac{\pi}{4}  - θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 =  \frac{1 + 2\:tan\:θ +  {tan}^{2}θ + 1 - 2\:tan\:θ + tan {}^{2}θ}{1 - tan {}^{2}\:θ}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

= tan( \frac{\pi}{4}  + θ) + tan( \frac{\pi}{4}  - θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 =  \frac{2(1 + {tan}^{2}θ) }{1-tan {}^{2}θ}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 = tan( \frac{\pi}{4}  + θ) + tan( \frac{\pi}{4}  - θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 =  \frac{2 {sec}^{2}θ }{1-( {sec}^{2} θ - 1)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

= tan( \frac{\pi}{4}  + θ) + tan( \frac{\pi}{4}  - θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 =  \frac{2 {sec}^{2}θ }{2- {sec}^{2} θ}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

= tan( \frac{\pi}{4}  + θ) + tan( \frac{\pi}{4}  - θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 =  \frac{2}{2- {cos}^{2} θ - 1}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

= tan( \frac{\pi}{4}  + θ) + tan( \frac{\pi}{4}  - θ =  \frac{2}{cos2θ} )

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Put θ back.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 = tan( \frac{\pi}{4}  +  \frac{1}{2}  {cos}^{-1}  \frac{a}{b} ) + tan

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 =  (\frac{\pi}{4}  -  \frac{1}{2} {cos}^{-1}   \frac{a}{b}  ) =  \frac{2}{cos2( \frac{1}{2} {cos}^{-1}  \frac{a}{b}) }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

= tan( \frac{\pi}{4}  +  \frac{1}{2}  {cos}^{-1}  \frac{a}{b} ) + tan

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

=  (\frac{\pi}{4}  -  \frac{1}{2} {cos}^{-1}   \frac{a}{b}  ) =  \frac{2}{ \frac{a}{b}  }

= tan( \frac{\pi}{4}  +  \frac{1}{2}  {cos}^{-1}  \frac{a}{b} ) + tan

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

=  (\frac{\pi}{4}  -  \frac{1}{2} {cos}^{-1}   \frac{a}{b}  )

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

=\frac{2b}{a}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

That does it.

Similar questions