prove that tanθ/secθ+1=secθ−1/tanθ
Answers
Answered by
0
Answer:LHS =
tanθ−secθ−1
tanθ+secθ−1
=
tanθ−secθ
tanθ+secθ−sec
2
θ+tan
2
θ
=
(tanθ−secθ)
(tanθ+secθ)−(secθ+tanθ)(secθ−tanθ)
=
(tanθ−secθ+1)
(tanθ+secθ)(1−secθ+tanθ)
=tanθ+secθ (RHS)
(proved)
Step-by-step explanation: pls mark 5 star
Answered by
0
Consider the LHS.
⇒
tanθ−secθ+1
tanθ+secθ−1
⇒
tanθ−secθ+1
tanθ+secθ−(sec
2
θ−tan
2
θ)
(∵sec
2
θ−tan
2
θ=1)
⇒
tanθ−secθ+1
(tanθ+secθ)−(secθ+tanθ)(secθ−tanθ)
(∵a
2
−b
2
=(a+b)(a−b))
⇒
tanθ−secθ+1
(tanθ+secθ)[1−(secθ−tanθ)]
⇒
tanθ−secθ+1
(tanθ+secθ)(tanθ−secθ+1)
⇒tanθ+secθ=
cosθ
sinθ
+
cosθ
1
=
cosθ
1+sinθ
Here,
LHS=RHS
Hence proved.
[{(please mark me as brainliest.)}]
Similar questions