Prove that (tan#+sec#-1)/(tan#+1-sec#)=(1+cos#)/sin#
Answers
Answered by
1
Step-by-step explanation:
tanA+secA-1/tanA-secA+1
=tanA+secA-(sec²A-tan²A)/tanA-secA+1
=(secA+tanA)(1-secA+tanA)/ (tanA-secA+1)
=secA+tanA
=1/cosA+sinA/cosA
=1+sinA/cosA
Similar questions